Journal Pre-proof

On-screen image-guided lead placement in cardiac resynchronization therapy: feasibility and outcome in a multicenter setting

Philippe C. Wouters, MD, Frebus J. van Slochteren, PhD, Anton E. Tuinenburg, MD PhD, Pieter A. Doevendans, MD PhD, Maarten-Jan M. Cramer, MD PhD, Peter-Paul H.M. Delnoy, MD PhD, Vincent F. van Dijk, MD PhD, Mathias Meine, MD PhD

PII: S2666-5018(22)00274-4
DOI: https://doi.org/10.1016/j.hroo.2022.10.002
Reference: HROO 309

To appear in: Heart Rhythm O2

Received Date: 28 June 2022
Revised Date: 28 September 2022
Accepted Date: 3 October 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Heart Rhythm Society. Published by Elsevier Inc.
A. 30 patients
0-90 days pre-CRT
76% within/adjacent
86% responders

B. Cardiac MRI analysis
- Scar
- Late Activation

Live image-guided implantation
LAO40 View
- Target
- LV-lead
- Scar

C. Changes in LVESV and LOG NT-proBNP

- ΔLVESV (%): Within - Remote
- ΔLOG NT-proBNP: Within - Remote
On-screen image-guided lead placement in cardiac resynchronization therapy: feasibility and outcome in a multicenter setting

Philippe C. Wouters MDa, Frebus J. van Slochteren PhDa,b, Anton E. Tuinenburg MD PhDa, Pieter A. Doevendans MD PhDa,c, Maarten-Jan M. Cramer MD PhDa, Peter-Paul H.M. Delnoy MD PhDd, Vincent F. van Dijk MD PhDe, Mathias Meine MD PhDa.

a Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands.
b CART-Tech B.V., the Netherlands.
c Netherlands Heart Institute, Utrecht, The Netherlands.
d Department of Cardiology, Isala Hospital, Zwolle, the Netherlands.
e Department of Cardiology, St Antonius Hospital, Nieuwegein, The Netherlands.

Short title: On-screen image-guided lead placement in CRT

Word Count: 4764

Conflict of interest: FJS is cofounder, chief technical officer and shareholder of CART-Tech B.V. MM and FJS are inventors and beneficiaries of a patent license arrangement between the University Medical Centre Utrecht and CART-Tech B.V. according to the rules of the University Medical Centre Utrecht.

Address for correspondence: Philippe C. Wouters, MD; Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; E-mail: p.wouters@umcutrecht.nl.
Abstract

Background: Image-guidance to assist left ventricular (LV) lead placement may improve outcome after cardiac resynchronization therapy (CRT), but previous approaches and results varied greatly, and multicentre feasibility is lacking altogether.

Objective: We sought to investigate the multicentre feasibility of image-guidance for periprocedural assistance of LV lead placement for CRT.

Methods: In 30 patients from three hospitals, cardiac magnetic resonance imaging (CMR) was performed within three months prior to CRT to identify myocardial scar and late mechanical activation (LMA). LMA was determined using radial strain, plotted over time. Segments without scar but clear LMA were classified as optimal for LV lead placement, according to an accurate 36-segment model of the whole heart. LV leads were navigated using image-overlay with periprocedural fluoroscopy. After 6 months, volumetric response and super-response were defined as ≥ 15% or ≥ 30% reduction in LV end-systolic volume (LVESV), respectively.

Results: Periprocedural image-guidance was successfully performed in all CRT patients (age 66±10 years; 59% male, 62% non-ischemic cardiomyopathy; 69% left bundle branch block). LV leads were placed as follows: within (14%), adjacent (62%), or remote (24%) from the pre-defined target. According to the conventional 18-segment model, a remote position occurred only once (3%). On average, 86% of patients demonstrated a volumetric response (mean LVESV-reduction 36±29%), and 66% of all patients were super-responders.

Conclusion: On-screen image-guidance for LV lead placement in CRT was feasible in a multicentre setting. Efficacy will be further investigated in the randomised controlled ‘Advanced Image Supported Lead Placement in Cardiac Resynchronization Therapy’ trial (ADVISE; NCT05053568).
Keywords: cardiac resynchronization therapy, heart failure, magnetic resonance imaging, image guidance, image overlay.
Introduction

Over the years, various approaches have been studied to prevent non-response after cardiac resynchronization therapy (CRT), or further improve treatment efficacy in patients already demonstrating a response. To this end, optimizing left ventricular (LV) lead placement (LVLP) remains crucial, since optimal device programming cannot overcome a suboptimal position. Regardless, the process of LVLP itself has remained largely unaltered, as LV leads are still routinely placed empirically.

It has been shown previously that placing the lead remote from scar and within late electromechanically activated segments improves response. The optimal LV lead location is therefore highly variable and patient-specific. Although initial prospective studies were encouraging, feasibility of in-target LVLP, efficacy, and methodology varied largely. In addition, most studies were performed in a single-centre setting. Despite its potential benefits, further development of a guided patient-tailored approach in everyday practice is still lacking.

Because of inconsistent results, the optimal strategy for LVLP is still debated. In contrast to echocardiography, cardiac magnetic resonance imaging (CMR) does not suffer from high user-dependence or poor acoustic windows. In addition, CMR allows for whole-heart analysis, not confined to a limited amount of segments of the LV lateral wall. Moreover, CMR is characterized by excellent spatial resolution, without the need for ionizing radiation, and is the gold standard technique for the identification of scar and myocardial viability.

The present study therefore set out to study the feasibility, and preliminary efficacy, of a dedicated device for image-guided LVLP, in a multicentre setting.
Methods
Study design
We prospectively included 30 consecutive patients from three participating centres. Patients with a class I and class IIa guideline indication for a de novo CRT implantation were eligible. Exclusion criteria were impediments for CMR (i.e., claustrophobia, contrast allergy), and permanent atrial fibrillation. Ischemic cardiomyopathy (ICM) was defined using clinical history or presence of ≥ 5% of the LV myocardial volume on LGE-CMR being scar. LV ejection fraction (LVEF) and cardiac dimensions were calculated using Simpson’s modified biplane method. The primary endpoint was reduction of LV end-systolic volume (∆LVESV), 6-month after CRT implantation. Volumetric response was defined as LVESV-reduction ≥ 15%, whereas super-response was defined as decrease of LVESV ≥ 30%. In addition, at 2 months (interquartile range [IQR] 2-3 months), absolute reduction in log-transformed N-terminal pro-brain natriuretic peptide (NT-proBNP) was calculated. The trial was registered at the Netherlands Trial Register (Trial NL8506) and approved by the Medical Research Ethics Committee Utrecht. All patients gave written informed consent. The research reported in this paper adhered to the Helsinki Declaration guidelines.

Image acquisition and processing
Within 3 months before CRT implantation, standard clinical CINE-CMR with late gadolinium enhancement (LGE) sequences (1 month [IQR 0-2]) were acquired, as previously described. Short axis CMR images were used to determine LV lead targets. Identification of LV lead targets was done using CARTBox software [CARTTech B.V., Utrecht, The Netherlands]. Myocardial scar was assessed by applying a ‘full-width at half maximum’ algorithm on LGE scans (Fig 1). This algorithm
identifies the highest intensity pixel within the myocardium and sets a lower threshold at half its maximum value. All pixels with values above this threshold are identified as scar. To fine-tune the scar segmentation the user can adjust the threshold, and manually erase pixels to exclude small areas of blood that are erroneously segmented. Inter-observer agreement concerning the location of scarred segments was strong (Cohen’s kappa = 0.866; p < 0.05). For late mechanical activation (LMA), feature tracking postprocessing of the CINE sequences was used to determine myocardial deformation in the radial direction. As a means of enhancing interpretability and improving signal-to-noise ratio, the magnitude of radial deformation was calculated and projected, over time, on geometrical 2D and 3D cardiac models. This resulted in 4-Dimensional Mechanical Activation Plots (4D-MAP), where the radial strain amplitude is displayed over time. Sites of LMA were identified as having the latest high radial strain amplitude, as displayed in a patient specific fashion (Fig 1; Supplemental Video 1).

LV lead target specification

Earlier image-guided LVLP studies used the 16 segment American Heart Association (AHA) models. By contrast, we incorporated a more specific 36-segment model, which allowed us to differentiate between more segments deemed relevant for LVLP. A predefined decision model was used to assist clinical decision making, and improve reproducibility and user-independence of target selection for LVLP. To this end, segments with myocardial scar were avoided at all times. In total, three sites with clear LMA, as evidenced on the 4D-MAP, were selected. The primary pre-defined site was the site with the most pronounced activation delay. This site was targeted and used as reference for statistical analyses (i.e., within, adjacent, remote). Apical segments were
analysed, but the apical ‘cap’ was excluded as a potential LV lead target. Ultimately, the lead was navigated to the primary target (i.e., LMA but no scar). The electrode closest to the pre-defined target was selected as the pacing electrode, in case of acceptable stimulation thresholds and absence of phrenic nerve stimulation.

Image overlay using model-to-image registration

The preprocedural CMR-derived 3D LV surface models were superimposed on live fluoroscopic imaging (i.e., model-to-image fusion). To this end, both a 3D and 2D technique can be used. Because 3D methods impose excessive radiation burden and are not available in all operating theatres, an easy to use 2D image-registration technique to register the 3D LV surface model was developed. The 3D and 2D fusion techniques were evaluated for non-inferiority in the first 5 patients of this study ([Supplemental Table 1](#)). Upon validation, only the 2D registration technique was applied in all subsequent patients ([Supplemental Fig 1](#)).

In brief, EP Navigator [Philips Healthcare, Best, The Netherlands], and CART-Box Suite Light [CART-Tech B.V., Utrecht, The Netherlands] were used. Periprocedural 3D-CMR to 2D-fluoroscopy registration was performed using two separate 2D-fluoroscopic registrations. Here, two acquisitions of the LV and coronary venous anatomy were acquired during balloon occlusion and contrast infusion, using an offset of at least 60 degrees (typically, LAO40 and RAO30). Image fusion was performed using anatomical landmarks ([Fig 2](#)). The image overlay, containing scar and the LMA target area, was superimposed on fluoroscopic images during the implantation procedure, aimed at increasing spatial lead-to-target proximity ([Fig 2](#)).
CRT Implantation and electrical measurements

Implantations were performed according to local protocols, always using quadripolar leads (Supplemental Appendix). There was no multipoint pacing. Although specific atrioventricular and interventricular optimization algorithms were rarely used, this decision was left at operator discretion. Electrical activation delay was measured, defined as the intrinsic interval between onset of the QRS complex on the ECG and local LV sensing delay on the intracardiac electrogram at a given LV pacing site (Q-LVsense). At the end of the procedure, implanting physicians were asked to briefly self-evaluate whether image-guidance affected their approach.

Allocation of final lead position

Final LV lead positions, relative to the pre-defined target, were determined at the end of the study by two observers, blinded to targets, patient characteristics, and outcome. Because defining final LV lead position is unreliable using fluoroscopy only \(^4\), the same model-to-image registration approach on 2D-fluoroscopic images was performed. Only slight agreement was found when comparing LVLP based on fluoroscopy only \(^5\) with model-to-image registration (Cohen’s kappa = 0.078; \(p = 0.536\)), confirming the necessity of the latter registration technique.

Statistical analysis

Statistics were performed in SPSS version 26 (IBM, Armonk, NY, USA). Depending on normal distribution, continuous data were expressed using mean ± standard deviation, or as median and interquartile range (IQR). Categorical data were expressed as the absolute number of occurrences and associated frequency (%). Independent subgroups were compared using a t-test or Mann–Whitney U test, where appropriate.
Fisher’s exact test was used to compare nominal variables. One-way ANOVA was used to compare three categories of lead locations. Inter-observer reliability was determined using intra-class correlation coefficient (ICC), or Cohen’s kappa for categorical variables. All statistical tests performed were two-tailed, and a p-value < 0.05 was considered statistically significant.
Results

A total of 87 de novo CRT patients were screened. Four were excluded because a contra-indication for CMR (all claustrophobia), and 53 because of no consent, permanent atrial fibrillation, or no available CMR. Thirty consecutive patients were included and underwent CRT implantation between December 2019 and May 2021. One patient had no suitable venous anatomy and required epicardial lead placement, resulting in exclusion from further analysis. All 29 remaining patients successfully underwent periprocedural image-guidance (Table 1). Scar burden, relative to the whole LV, was ≥ 5% in ten patients (median 7.75% [5.2-13.7]).

Multicentre feasibility of periprocedural image fusion

Complete CMR analysis was completed within two days after receiving data from participating hospitals. Image fusion at the catheter laboratory was performed in 22±7 minutes for 3D fusion, and within 5 minutes for 2D fusion. According to operating physicians, image-fusion was displayed on time in 28 cases (96%), thereby not significantly postponing LVLP. Average duration of LV lead placement was 50±35 minutes, with a total procedure time of 120±45 minutes. On average, 55±28 ml contrast fluid was used. Radiation dose area was lower using the 2D-fusion method as compared to using the 3D-rotational fluoroscopy (2805±4051 versus 4840±2625 µGy/m2; p = 0.299).

LV lead positioning and target allocation

Based on the 36-segment model, inter-observer comparison reproduced the exact same primary target selection in 12 cases (63%), and an adjacent one 6 times (32%). There was substantial agreement when evaluating final LV lead location categories,
based on the primary target of the two different observers (Cohen’s kappa = 0.680; \(p < 0.001 \)).

Fig 3 displays ‘final’ lead distribution, with the majority of leads positioned within \((n = 4; 14\%)\) or adjacent \((n = 18; 62\%)\) to the pre-defined target. On average, midventricular segments were \(4.3 \pm 1.2 \text{ cm}^2\) in size, whereas basal segments averaged \(6.7 \pm 1.5 \text{ cm}^2\). According to either the 36-segment or conventional 18-segment AHA model, a remote position was acquired in 24\% \((n = 7)\) or 3\% \((n = 1)\) of patients, respectively. Documented explanations for deviation of the advised primary target were lack of venous access \((n = 5)\), high pacing thresholds \((n = 2)\), phrenic nerve stimulation \((n = 1)\), or unstable lead position \((n = 1)\).

Electrical properties

Q-LVsense of the stimulation electrode (average \(157 \pm 35 \text{ ms}\)) was similar when stratified to lead position \((\geq 150 \text{ ms}, \text{ regardless of vicinity to the target})\), and unaffected by presence of scar (**Supplemental Fig 2**). Intrinsic LV electrical delay, normalized to QRS-duration (Q-LVsense/QRSd), was not associated with a volumetric response \((\text{AUC} = 0.542; \ p = 0.793)\). When separated at the median, high versus low Q-LVsense/QRSd was not associated with \(\Delta \text{LVESV} (37 \pm 28\% \text{ versus } 32 \pm 28\%; \ p = 0.572)\). Pacing thresholds at the final electrode were \(0.9 \pm 0.5 \text{ V}\). At 2-month and 6-month follow-up, 2-month biventricular pacing percentage was on average \(95 \pm 13\% \(< 95\% \text{ in four patients})\). No LV pacing vectors were altered, and no shocks were delivered.
Volumetric and neurohumoral response

In total, average reduction in LVESV was 36±29%, with 25 patients (86%) being volumetric responders, and 19 super-responders (66%; Fig 4A). Volumetric response rates were 95% in non-ICM, 94% in left bundle branch block (LBBB), 73% in ICM, and 67% in non-LBBB. Although not significant, the four non-responders were more frequently characterized by ICM, non-LBBB and not being on β-blockers (Table 1). In-scar pacing was unavoidable in two cases, which were both non-responders with a mean ‘increase’ in LVESV of 35±14% (Supplemental Fig 2). Excluding in-scar pacing, LVESV-reduction in patients with and without ICM (33±17% versus 45±21; p = 0.158) or non-LBBB and LBBB (35±28 versus 43±18; p = 0.380) was non-significantly different.

Volumetric response was comparable between different anatomical LV lead locations (Fig 4B). A non-remote lead position resulted in similar reverse remodeling when compared to remote lead placement (37±25 versus 33±38; p = 0.796). Absolute LVEF increased on average by 13±12%, with 45% of patients having their LVEF increased to ≥ 35% (Table 2). Inter-observer reliability for echocardiographic measurements of LVESV was excellent (ICC = 0.990 [95% confidence interval 0.956-0.998]; p < 0.001). Log-transformed NT-proBNP decreased significantly at 2-month follow-up (3.03 versus 2.82; p = 0.013), with a non-significant trend between NT-proBNP and lead position ($\eta^2 = 0.220; p = 0.199$) (Fig 4C).

Influence of image-guidance on decision making

Before image-guidance, the brief user questionnaire revealed a mid-(antero)lateral position as most frequently preferred target by the physician. The 4D-MAP analysis identified a target adjacent or remote from the physicians’ target in 39% and 33% of
cases, respectively. Implanting physicians noted that image-guidance significantly altered the implantation by navigating towards another target in 38% of cases. In 19% of all cases, another vein was chosen. They noted that the procedure was either somewhat prolonged or shortened in 21.7% and 13.0%, respectively. Ultimately, image-guidance was perceived as helpful in 60.7% of cases.

Discussion

We demonstrate the use of image-guided LVLP in a multicentre setting, using an accurate 36-segment model. Within- or adjacent-from-target LVLP occurred in 76% of cases, with 86% of patients classified as responders. However, according to the 18-segment model, only one patient had the LV lead implanted in a ‘truly’ remote position. Model-to-image fusion, combing CMR and live dual-view fluoroscopic venograms, is therefore feasible in a multicentre setting.

Determinants of response to CRT

There were four patients in our series who did not respond to CRT. Although patient characteristics also determine response to CRT, a poor LV-lead position within scar likely explained non-response in two out of four non-responders (Supplemental Fig 2). Importantly, if in-scar pacing could be avoided, despite a clear scar burden, response rates were high in patients with ICM and non-LBBB. Conversely, optimal pacing areas are relatively larger in patients with LBBB and non-ICM ⁶, and the majority of leads were optimally placed, which may explain why no clear association was found between lead-to-target proximity and response.
Periprocedural image-guided lead implantation

One previous study required CMR acquisition and CRT implantation in a single session, complicating its use in clinical practice11. Two other studies targeted segments with the most delayed time-to-minimum volume, using regional volume-over-time curves11,12. By contrast, our approach used time-dependant visualisation of mechanical activation. This likely reduced the influence of noise and improved interpretability relative to conventional approaches, as underscored by the substantial inter-observer agreement for target selection in the present study. To our knowledge, previous studies did not report reproducibility of target selection. Lastly, traditional larger segment models less accurately portray spatial lead-to-target proximity, which limit how precise regions with scar and LMA can be visualized and targeted.

Feasibility in multicentre setting

Only 34\% of the 87 screened \textit{de novo} CRT patients were enrolled, in part because timely acquisition of a new CMR was not always possible. However, actual contra-indications for CMR were rarely encountered. Regardless, image-guidance was successfully performed in all CRT patients. Notwithstanding limited venous access or high pacing thresholds, which precluded optimal LVLP in some patients, a near-optimal position was acquired in the majority of cases. In addition, implantation times compared favorably with all previously conducted live image-guide studies11–13. When comparing differences in spatial lead-to-target proximity, “adjacent” LVLP, according to 36-segments, can be considered similar to “within” target in the 18-segment model (Fig 2). Unfortunately, feasibility of previous live image-guided approaches was tested in single centre settings only, and with smaller sample sizes11–13. Yet, the percentage of 6-month volumetric responders was lower at 60\%12,13, or not investigated11. Lastly,
these studies enrolled more patients with LBBB 11–13, and included comparable amounts of patients with ICM 12,13.

Electrical guiding as alternative

Maximising the Q-LVsense interval is a well-recognised strategy to enhance response to CRT. Although Q-LVsense is associated with CRT response on the group level 7, it cannot differentiate optimal from suboptimal segments in individual patients 16. Differentiation is especially difficult when Q-LVsense is high, or when differences in Q-LVsense at various locations of a quadripolar lead are small, which is the case when leads are already placed in or near an optimal location 6,16. Hence, lack of association between Q-LVsense and remodelling is also reflected by our results, since average Q-LVsense at the stimulation electrode was ≥ 150 ms, and similar across patients with different LV lead locations. Mapping Q-LVsense in all suitable epicardial veins may prove more effective, but this approach is time consuming and cumbersome 17. Moreover, Q-LVsense guidance provides no additional benefit in patients with non-LBBB 18. By contrast, image-guidance has shown to be beneficial in this subgroup, and can pre-procedurally characterize the mechanical delays of the whole LV lateral wall 4.

Clinical relevance and outlook

In theory, image-guidance may be most valuable in patients with non-LBBB and ICM, since these patients typically demonstrate heterogeneous LV electrical activation, have smaller target sites, and demonstrate poorer outcome after CRT when compared to non-ICM or LBBB patients 6. Although CMR is costly, an increase of 5% in the proportion of CRT responders may render an image-guided technique cost-effective 19. Moreover, relative to approaches that lack fluoroscopic overlay 6, use of
'periprocedural' image assistance substantially increase the in-target success rate from 30-63% to 71-83% \(^{11-13}\). These findings are in line with our results, confirming the importance of model-to-image registration to achieve in-target LVLP. Moreover, using an image-guided approach to determine the optimal pacing site provides a faster and less invasive alternative to using acute hemodynamic measurements \(^{20}\).

Limitations

Although promising, our results should be interpreted with caution in the context of a non-randomised design. The separately conducted randomized multicentre ‘Advanced Image Supported Lead Placement in Cardiac Resynchronization Therapy’ trial (ADVISE; NCT05053568) will address this important limitation \(^{19}\). Although the high proportion of LBBB may have influenced our results, patient characteristics were comparable to previous live image-guided studies \(^{11-13}\). Descriptive subgroup analyses were provided for hypothesis-generating purposes, but analyses were underpowered due to limited sample size. As a result, the effect of LV lead location and response warrants further research. Although CMR has high spatial resolution, better temporal resolution is achieved using speckle-tracking echocardiography. Alternatively, cardiac computed tomography may be more suitable in patients with a pre-existing ICD implanted, and can also assess venous anatomy \(^{13}\). Lastly, accurate identification of LVLP using fluoroscopy is not without its pitfalls due to variable cardiac anatomy and high observer-dependent interpretation \(^{14}\). However, our model-to-image registration-approach likely reduced the risk of misclassification, without the need for post-CRT computed tomography.
Conclusions

Use of CMR as a radiation-free and non-invasive imaging technique to guide LV lead implantation is feasible in a multicentre setting, since 76% of leads were implanted in close proximity to the target, and 86% of patients demonstrated a volumetric response with a mean reduction in LVESV of 36%. Accurate segmental analysis, time-dependent visualization of radial strain, and periprocedural image-fusion may have contributed to these promising results. The randomised controlled ADVISE trial will further study the clinical efficacy following the present approach.¹⁹

Data availability

Data underlying this article will be shared on reasonable request to the corresponding author.

Acknowledgments

None.
References

Table 1. Baseline clinical characteristics of study population.

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Total (n=29)</th>
<th>Responders (n=25)</th>
<th>Non-responders (n=4)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex – n (%)</td>
<td>17 (59)</td>
<td>13 (52)</td>
<td>4 (100)</td>
<td>0.121</td>
</tr>
<tr>
<td>Age (years)</td>
<td>66±10</td>
<td>66±11</td>
<td>64±9</td>
<td>0.766</td>
</tr>
<tr>
<td>Non-ICM – n (%)</td>
<td>18 (62)</td>
<td>17 (68)</td>
<td>1 (25)</td>
<td>0.107</td>
</tr>
<tr>
<td>NYHA II – n (%)</td>
<td>16 (55)</td>
<td>13 (52)</td>
<td>3 (75)</td>
<td>0.606</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td>1529±1580</td>
<td>1494±1596</td>
<td>1897±1917</td>
<td>0.739</td>
</tr>
<tr>
<td>History of AF</td>
<td>5 (17)</td>
<td>4 (16)</td>
<td>1 (25)</td>
<td>0.553</td>
</tr>
<tr>
<td>Type 2 DM</td>
<td>5 (17)</td>
<td>5 (20)</td>
<td>0 (0)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Electrocardiographic parameters

| LBBB – n (%)† | 20 (69) | 19 (76) | 1 (25) | 0.076 |
| QRS duration (ms) | 169±20 | 170±19 | 159±23 | 0.285 |

Medication

β-blocker – n (%)	23 (79)	21 (84)	2 (50)	0.180
ACEi/ARB – n (%)	27 (93)	23 (92)	4 (100)	1.000
Spironolactone – n (%)	12 (41)	9 (36)	3 (75)	0.279

Echocardiographic parameters

LVEDV (ml)	209±79	212±85	190±12	0.604
LVESV (ml)	163±68	166±72	141±15	0.503
LVEF (%)	23±7	22±7	26±4	0.310
TAPSE (mm)	18±5	18±5	21±5	0.192

Legend: ACEi, angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin-II receptor blocker; DBP, diastolic blood pressure; DM, diabetes mellitus; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; ICM,
ischemic cardiomyopathy; IVMD, interventricular mechanical delay; LBBB, left bundle branch block; LV, left ventricular; NT-proBNP, N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association; TAPSE, tricuspid annular plane systolic excursion. † According to the ESC definition.
Table 2. Changes in echocardiographic function.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>6-months</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDV (ml)</td>
<td>209±79</td>
<td>153±68</td>
<td><0.001</td>
</tr>
<tr>
<td>LVESV (ml)</td>
<td>163±68</td>
<td>101±55</td>
<td><0.001</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>22±7</td>
<td>35±12</td>
<td><0.001</td>
</tr>
<tr>
<td>IVMD (ms)</td>
<td>87±85</td>
<td>34±31</td>
<td>0.002</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>18±5</td>
<td>18±7</td>
<td>0.759</td>
</tr>
<tr>
<td>RV S' (cm/s)</td>
<td>10±3</td>
<td>12±4</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Legend: EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; IVMD, interventricular mechanical delay; LV, left ventricular; RV S', right ventricular systolic velocity (S'); TAPSE, tricuspid annular plane systolic excursion
Fig 1. Mechanical activation starts early at the septum (frame 5), and progresses heterogeneously towards the mid-anterolateral region of the left ventricle lateral wall (frame 15). Conversely, the posterior and posterolateral wall show scar.
Fig 2. Model-to-image registration to guide left ventricular lead implantation in real-time. The 36-segment mesh is derived from cardiac magnetic resonance imaging, and is superimposed on dual-view fluoroscopic venograms, using the right anterior oblique (RAO, left column) and left anterior oblique (LAO, right column) acquisitions. Sites of latest mechanical activation (green, upper panels) are targeted, scar tissue (red, lower panels) is avoided. In this case, the most suitable target for lead implantation is determined as mid-lateral 1, and displayed to the implanting physician (middle panel). The red dot indicates the coronary sinus, and orange dot the middle cardiac vein.
Fig 3. Bullseye plot according to the 36-segment model (individual parts) and traditional 18-segment model (colorized parts). Leads were distributed across ten different locations, whereas 8 different segments were identified as optimal.
Fig 4. Volumetric and neurohumoral response. In total, 86% of patients were volumetric responders (A). Although ∆LVESV was not significantly related to lead position (B), an association with log-reduction in NT-proBNP was observed (C).

Legend: BIV-P, biventricular pacing < 95%; ICM, ischemic cardiomyopathy; LBBB, left bundle branch block; LVESV, left ventricular end-systolic volume; NT-proBNP, N-terminal pro-brain natriuretic peptide.
Key Findings

- For the first time, feasibility of ‘live’ image-guidance for CRT was demonstrated in a multicentre setting.

- Fusion of CMR with dual-view fluoroscopic venograms allowed for accurate guidance and easy clinical adoption.

- Echocardiographic response was 86%, with 76% of leads positioned in close proximity to the patient-specific optimal target.

- Accurate segmental analysis and time-dependant visualisation of radial strain may have contributed to our results.